Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Asthma Allergy Immunology ; 18:19-22, 2020.
Article in English | EMBASE | ID: covidwho-2312696

ABSTRACT

Since December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) infection causing COVID-19 disease has influenced the whole world. Angiotensin converting enzyme 2 (ACE2) receptors on type 2 pneumocytes in humans were determined as the entry for SARSCoV-2. Receptor binding and subsequently endocytosis of ACE2 diminish the cell membrane expression and also the function of ACE2. ACE2 is an enzyme involved in bradykinin metabolism. Lys-des-Arg9-BK occured with enzymatic cleaving of Lys-BK derived from low molecular weight kininogen is inactivated by ACE2 in tissues and it is a vasodilator agent having its own receptor named bradykinin B1. Non-metabolized Lys-des-Arg9-BK can be the reason for tissue vasodilation and increased vascular permeability in the patients with COVID-19. Increased bradykinin levels in patients with hereditary angioedema with C1-INH deficiency (C1-INH-HAE) do not cause increased SARS-CoV-2 infection or more severe disease. Although SARS-CoV-2 infection does not result in increased bradykinin levels, it can increase Lys-des-Arg9-BK levels.Copyright © 2020 Bilimsel Tip Yayinevi. All rights reserved.

3.
Astim Allerji Immunoloji ; 18:19-22, 2020.
Article in English | Web of Science | ID: covidwho-965399

ABSTRACT

Since December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) infection causing COVID-19 disease has influenced the whole world. Angiotensin converting enzyme 2 (ACE2) receptors on type 2 pneumocytes in humans were determined as the entry for SARS-CoV-2. Receptor binding and subsequently endocytosis of ACE2 diminish the cell membrane expression and also the function of ACE2. ACE2 is an enzyme involved in bradykinin metabolism. Lys-des-Arg9-BK occured with enzymatic cleaving of Lys-BK derived from low molecular weight kininogen is inactivated by ACE2 in tissues and it is a vasodilator agent having its own receptor named bradykinin B1. Non-metabolized Lys-des-Arg9-BK can be the reason for tissue vasodilation and increased vascular permeability in the patients with COVID-19. Increased bradykinin levels in patients with hereditary angioedema with C1-INH deficiency (C1-INH-HAE) do not cause increased SARS-CoV-2 infection or more severe disease. Although SARS-CoV-2 infection does not result in increased bradykinin levels, it can increase Lys-des-Arg9-BK levels.

SELECTION OF CITATIONS
SEARCH DETAIL